Hydrogen Readiness Of The Gas Infrastructure Manufacturer Perspective

Farecogaz, April 2022

Harald Petermann

Carsten Lorenz

Paul Ladage

Company Confidential - 28/05/2020

Hydrogen Readiness Of Gas Infrastructure

AGENDA

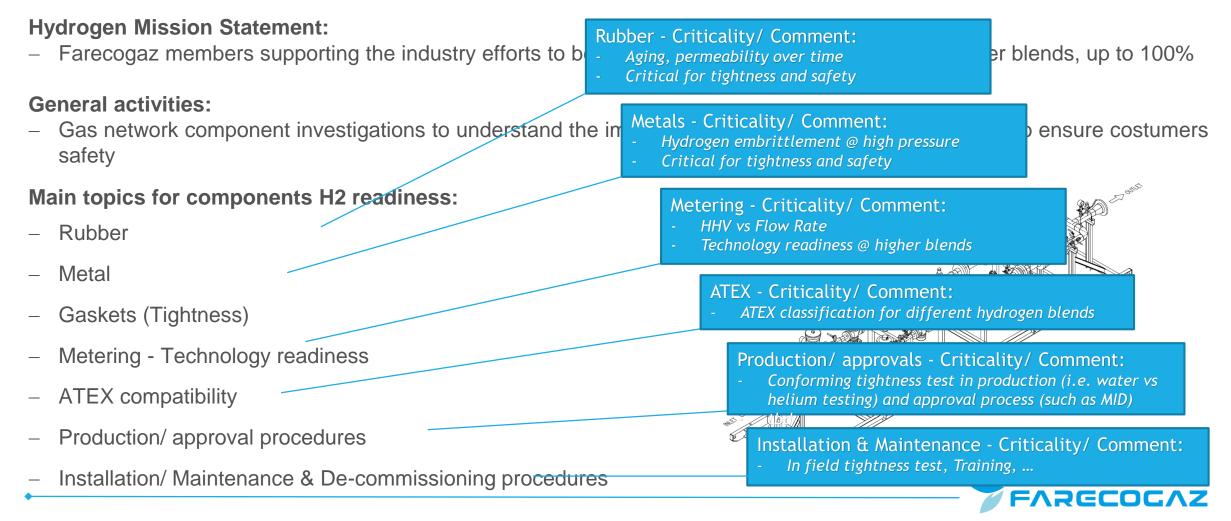
- Farecogaz Introduction
- Hydrogen mission statement & activities
- Hydrogen readiness baseline & general statements
- Equipment overview & hydrogen readiness
- What about 100% hydrogen?
- Hydrogen manufacturer declaration

Farecogaz – Introduction

Farecogaz – Who we are

Association of European Manufacturers of gas meters, gas pressure regulators & associated safety devices and gas stations

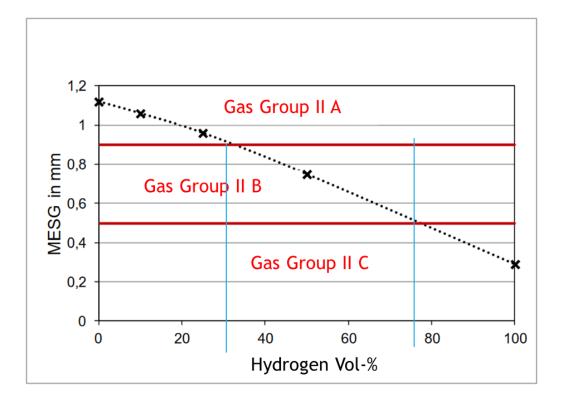
18 Members across Europe covering multiple disciplines along the gas value chain


Farecogaz – Structure & Organisation

President – Carsten Lorenz Vice President – Paul Ladage Harald Petermann – General Secretary

Farecogaz – Hydrogen Mission Statement

Farecogaz mission & members activities regarding hydrogen readiness:


Hydrogen Readiness – Baseline

- Products for gas measurement & regulation typically covered by European Standards such as:
 - Pressure Equipment Directive (PED)
 - Measurement Instrument Directive (MID)
 - Equipment for Explosive Atmospheres Directive (ATEX)
- General requirements for the products especially those for metrology and performance are specified in harmonized standards
 - These standards need to be adapted for hydrogen work in progress
- Conformity assessment required before placing into market
 - For Hydrogen manufacturers declare conformity in manufacturer declarations

Hydrogen Readiness – Baseline

ATEX classification for gas infrastructure components in natural gas/ hydrogen mixtures

Abschlussbericht zum Forschungsvorhaben 2539, Bundesanstalt für Materialforschung und -prüfung

Source:

EN 60079-20-1; 5.2.4, 5.2.1

- **Group IIA** for $\leq 25\%$ hydrogen
- **Group IIB** for > 25% hydrogen
- **Group IIC** for \geq 75% hydrogen

I.e. ATEX marking for a residential Ultrasonic gas meter suitable for natural gas and hydrogen up to 100%

II 3G Ex ic IIC T3 Gc

Hydrogen Readiness – General Statements

- No uniform trend for H2 blending yet.
 - Utility requests for components to operate in H2 blends of 10%, 20% and 100% (feasibility)
- Many pilot projects started/ ongoing small scale
- Harmonized standards for conformity assessment to be adapted (Meters & Regulators)
 - Considering long-term experience and endurance results
- NewGasMet-Project investigates on impact of renewable gases on standards that are used to demonstrate the conformity of gas meters to the European Measuring Instruments Directive (MID)
 - Recommendations expected in Q4 2022 on
 - EN 12480 Rotary Gas Meters
 - EN 12261 Turbine Gas Meters
 - EN 1359 Diaphragm Gas Meters
 - EN 14236 Ultrasonic Gas meters
 - prEn 17526 Thermal Mass Gas Meters
 - CEN/ TC 237 & OIML R137

Hydrogen Readiness – General Statements

- Standards for Gas pressure regulators:
 - EN 334 11/2019 Gas pressure regulators up to 100bar Update work started 01/2021
 - EN14382 11/2019 Safety devices up to 100bar
 - ISO 23555-1 bis -3
- Main Working items (Ad Hoc Groups):
 - Leakage test specification
 - Material suitability Metal/Non-Metal

FARECOGAZ

- Update work started 01/2021

Update after EN 334/EN 14382 readiness

Hydrogen Readiness – General Statements

- Fundamentals in Europa:
 - CEN Hydrogen H2NG Initiative:

GERG Study mirrored in CEN TC234/WG13:

"To develop a detailed understanding of the state of the art relating to hydrogen injection in the gas networks based on international information sources" e.g.:

- Priority 1: Safety: Classification of Leaks, integrity management, Gas tightness
- Priority 7: Network equipment: Impact of H2 addition on equipment and material on network

Hydrogen Readiness – Infrastructure Component Overview

			[%]→	2 5	10	20	25	30	40	50	60	70	80	90	100	
-	TS	Pipeline (steel, > 16 bar)	10%	2 3	10	20	25	50	40	50	00	70	00	90	100	Possible without adjustment as per current knowledge
TS 51 51																Madifications maybe peopled
		Compressors	5% 100%													Modifications maybe needed.
		Storage (cavern)	100%													
		Storage (porous)														Conflicting references, further R&D/ clarification requi
		Dryer	5%													
		Valves	10%													Significant modifications/ replacement required.
		Process gas chromatographs														
		Volume converters	10%													Not feasible.
	S/DS	Volume measurement	10%													
	DS	Pipeline (plastics. < 16 bar)	100%								<u> </u>	<u> </u>	<u> </u>			
	DS	Pipeline (steel, < 16 bar)	25%													
	DS	House installation	30%													
	U	Gas engines	10%													TS Transmission System
	U	Gas cooker	10%													TS – Transmission System
	U	Atmospheric gas burner	10%													ST – Storage
	U	Condensing boiler	10%													DC Distribution System
		CNG-vehicles	2%													DS – Distribution System
	U	Gas turbines	1%													U – Utilization
		Feedstock														

Hydrogen Readiness – Selected Components

Product Group	Appl	ication	Hydrogen Impact								
			≤ 10%*			≤ 30% *			100%*		
			Safety	Function	Normative	Safety	Function	Normative	Safety	Function	Normative
Diaphragm Gas Meters	residential										
Ultrasonic Gas Meters	residential	low pressure									
Thermal Mass Gas Meters	residential										
Rotary Gas Meters	industrial				work in			work in			work in
Turbine Gas Meters	industrial	medium/ high pressure			progress			progress			progress
Ultrasonic Gas Meters	industrial										
Low/ mid Pressure Regulators	residential	low pressure									
High Pressure Regulators	industrial	high pressure									

Can operate without any restrictions related to safety, function/ performance.

No restrictions expected related to safety, function/performance. Long term/ endurance test for confirmation

Need further investigations and likely modifications.

*Generally it is recommend to check manufacturer H2 declarations or directly consult the manufacturer before using components in H2 blends.

What about 100% Hydrogen?

Replacing natural gas with Hydrogen – Fluid property implications for gas meters

- Volume flow rates of gas meters will need to increase to transport the same amount of energy
- Installed base of gas meters potentially would run over-ranged in high/ 100% H2 blends
- Metrological performance of installed gas meters in high H2 blends to be confirmed
- Standards to be modified for pattern approval and initial/ in-service calibration (tightness, endurance, metrological)

Property	Hydrogen	Methane			
Heating Value (massic)	39,39 kwh/kg	13,9 kwh/kg			
Heating Value (volumic)	3 kwh/m³	10 kwh/m³			
Heat Conductivity	0,186 W/m K	0,00341 W/m K			
Density (0°)	0,0899 kg/m ³	0,72 kg/m³			
Sonic Speed	1284 m/s	430 m/s			

H2 flov	H2 flow rate implications @ Qmax								
Meter Type	Natural Gas	100% Hydrogen							
G4 (i.e. DGM)	6 m³/h	20 m³/h							
G10 (i.e. DGM)	16 m³/h	50 m³/h							
G250 (i.e. Rotary)	400 m³/h	1202 m³/h							
G400 (i.e. Rotary)	650 m³/h	1952 m³/h							

Regulator & Safety devices in use with Hydrogen

Replacing natural gas with Hydrogen – Fluid property implications for gas pressure regulators

- The transported energy content decreases as the proportion of hydrogen increases, since hydrogen has a volume-related calorific value that is three times lower than that of natural gas.
- Balancing the energetic performance of a gas pressure regulator, the transported performance decreases slightly with increasing hydrogen content.

Regulator & Safety devices in use with Hydrogen

Replacing natural gas with Hydrogen – Fluid property implications for gas pressure regulators

- Flow capacity increase of the specific regulator with increasing H2 ratio
- Flow velocity increase
- Sound emission increase
- Reduced flow capacity of an existing GPRS
- Review of station sizing
- Negative Joule-Thomson-Coefficient leading to a slight temperature increase at 100% H2

Manufacturer Declaration For Hydrogen Readiness

- Actually, many manufacturers already published declarations for H2 readiness on their websites
- For the moment these declarations are in manufacturer specific format
- Farecogaz is about to standardize the manufacturer declaration and using a common standard across the industry – centrally stored on Farecogaz website
- Manufacturers can confirm the suitability of products concerning MID, PED, ATEX,...

Manufacturer declaration		Maximum admissible band width of hydrogen content in Natural Gas
	260/262 mit Wasserstoffbeimischungen oder	Performance data (flow range, control parameters, accuracy, repeatability, etc.) are as for operation with Natural Gas without Hydrogen content: If "No": refer to "Additional Information".
 mit reinem Wasserstoff Concerning of Natural Gas (NG) devices w with Natural Gas and admixtur pure hydrogen 		Limits of Operating Pressure / Operating Temperature pressure resistance are as for operation with Natural Gas without Hydrogen content./ If "No": refer to "Additional Information".
Name des Ausstellers: Issuer's name:	Manufacturer A	Safe-guarding of chemical resistance by use of suitable materials for wetted parts acc. to Pressure Equipment Directive 2014/68/EU (PED) Gas tightness of the device was tested at a test pressure of 1,1 times the max operating pressure, applying
Anschrift des Ausstellers: Issuer's adress:		 □ Air □ Nitrogen □ a gas mixture including a minimum of 10 vol-% H2 or >99% H2
Gegenstand der Erklärung: Object of the declaration:	Pressure regulator with shut off device	 □ a gas mixture including a minimum of 10 vol-% He or >99% He ☑ other method, refer to "Additional Information" Tick where applicable.
Typenbezeichnung: <i>Type designation:</i>		The standard configuration of the device is approved for use in potentially explosive atmospheres acc. to ATEX-Directive 2014/34/EU minimum for explosion group (minimum):
Erklärungs-Nummer und Revision: Declaration-no. and Revision:		• □ IIA • □ IIB • □ IIB+H2 • □ IIC
The devices specified above comply	to the following requirements	 Approval(s) for higher gas group(s) available, refer to "Additional Information". Tick where applicable.
		Note: The suitability of the device for use in gas mixtures with up to 10 vol-% Hydrogen content has to be verified by a risk assessment performed by the operating company.
		Suitability of the device for the use in commercial transactions acc.to the Measuring Instruments Directive 2014/32 / EU (MID) in conjunction with the Technical Guideline TR-G 19 of the Physikalisch-Technische Bundesanstalt.

[Vol. 0-10% -%]

For operation when the hydrogen content in Natural Gas is < 10 Mol-%

Thank You !

